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Abstract. — Fix an integer ` ≥ 3. Rikuna introduced a polynomial r(x, t) defined over
a function field K(t) whose Galois group is cyclic of order `, where K satisfies some mild
hypotheses. In this paper we define the family of generalized Rikuna polynomials {rn(x, t)}n≥1

of degree `n. The rn(x, t) are constructed iteratively from the r(x, t). We compute the Galois
groups of the rn(x, t) for odd ` over an arbitrary base field and give applications to arithmetic
dynamical systems.

Résumé. — Soit ` ≥ 3 un nombre entier fixé. Rikuna a défini un polynôme r(x, t) sur un
corps de fonctions K(t) dont le groupe de Galois est cyclique d’ordre `, où K satisfait à certaines
hypothèses pas très restrictives. Dans cet article, nous définissons la famille des polynômes de
Rikuna généralisés {rn(x, t)}n≥1 de degré `n. Les rn(x, t) sont construits de manière itérative à
partir de r(x, t). Nous calculons les groupes de Galois des rn(x, t) pour ` impair sur un corps de
base arbitraire et donnons des applications aux systèmes dynamiques arithmétiques.

1. Introduction

In [11], Rikuna introduced a one-parameter family of polynomials with wide-ranging applica-
tions to arithmetic. In particular, let ` > 2 be a fixed positive integer (not necessarily prime)
and K a field of characteristic coprime to ` that does not contain a primitive `-th root of
unity. Fix an algebraic closure K of K and fix a primitive `-th root of unity ζ` ∈ K. Assume
further that ζ+` := ζ` + ζ−1` ∈ K. Following [11], define the polynomials p(x), q(x) ∈ K[x] by

p(x) :=
ζ−1` (x− ζ`)` − ζ`(x− ζ−1` )`

ζ−1` − ζ`

q(x) :=
(x− ζ`)` − (x− ζ−1` )`

ζ−1` − ζ`
.

Let t be an indeterminate over K and define the degree ` Rikuna polynomial by r(x, t) =
p(x)− t q(x) ∈ K(t)[x].
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20 Arithmetic Properties of Generalized Rikuna Polynomials

Rikuna’s polynomials have been very well-studied in a number of different guises. For example,
when ` = 3, r(x, s/3) is the “simplest cubic” polynomial of Shanks [13], which has deep
arithmetic implications (see, for example, [5], [8], and [12]). Rikuna originally introduced
r(x, t) as a method for creating cyclic Galois extensions of a base field that are not given by
Kummer or Artin-Schreier theory (hence the requirement that ζ` 6∈ K). He proved in [11]
that for all ` ≥ 3, r(x, t) is irreducible over K(t) and has Galois group Z/` over K(t). It was
then shown in [6] that when ` is odd r(x, t) is generic in the sense that every Z/`-extension
of L with L ⊃ K is obtained as a specialization of r(x, t). When ` is even, r(x, t) need not be
generic and in [6] an algebraic characterization of the non-genericity is given.
When K is a finite field of characteristic coprime to `, the Rikuna polynomials have been
used for certain class number constructions. Using the notation above, in [3] they consider
ϕ(x) = p(x)/q(x) and use a recursive construction to give explicit families of function fields
with certain class number indivisibility properties.
Before Rikuna defined the polynomial r(x, t) Shen and Washington introduced in [14] and
[15] an interesting family Pn(x, t) of polynomials of prime-power degree. There, they take `
to be prime and the base field to be K = Q(ζ+` ). Then write

(x− ζ`)`
n

= an(x)− ζ`bn(x),

with an, bn ∈ K[x]. Write Pn(x, t) = an(x)− (t/`n) bn(x) with t ∈ OK . The authors call this
the `n-tic polynomial, and it coincides with our “generalized Rikuna polynomial” below (one
must replace “t” by “`nt”, and we consider general t ∈ K). They then determine the splitting
fields of the Pn(x, t), their ramification properties, and the structure of the units. Moreover,
they apply Faltings’ theorem over K to certain superelliptic curves to show that the number
of reducible specializations of their polynomials is finite. In the special case ` = 3, the authors
further show in [15] that Pn(x, t) is irreducible for all t ∈ Z.
In this paper we take a different approach to the polynomials of Rikuna and Shen-Washington
by interpreting them in the context of iterated self-maps of P1. To define them, we follow
closely the conventions of [16, Ex. 4.9]: if F,G ∈ K[X,Y ] are homogenous polynomials of
degree d ≥ 2 with no common factors, then they give rise to a rational self-map ϕ = [F,G] of
P1. Let F0(X,Y ) = X and G0(X,Y ) = Y and inductively define

Fn+1 = Fn(F (X,Y ), G(X,Y )) and Gn+1 = Gn(F (X,Y ), G(X,Y )).

Then Fn and Gn have no common factors and the n-th iterate ϕ(n) of ϕ is given in homogenous
coordinates by ϕ(n) = [Fn, Gn].
We now apply this machinery to our setup. Let P,Q ∈ K[X,Y ] be the homogeneous forms
of p, q above, respectively. Then P and Q are homogenous of degree ` and `− 1, respectively,
and have no common factors (one can show that Res(P,Q) = (ζ` − ζ−1` )`(`−1)Y `2). Define
ϕ : P1 → P1 by the pair [P,Q] and the n-th iterate ϕ(n) by [Pn, Qn], as above. Then ϕ(n) is
a rational self-map of P1 of degree `n. In affine coordinates we may write pn(x) = Pn(x, 1)
and qn(x) = Qn(x, 1) so that

ϕ(n)(x) :=
pn(x)

qn(x)
.

We define the sequence of generalized Rikuna polynomials {rn(x, t) ∈ K(t)}n≥1 by

rn(x, t) = pn(x)− t qn(x),
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where r1(x, t) = r(x, t). These polynomials are similar to the ones in [14] and [15], but we
only require that ` be odd, not prime, nor do we put any restriction on K except that ζ+` ∈ K
and ζ` 6∈ K, and we work over the general function field K(t); namely we do not restrict to
integral specializations in the special case K = Q(ζ+` ). Our main result is the following:

Theorem 1. — Fix an odd integer ` > 2, let K be a field of characteristic coprime to `, and
fix an algebraic closure K of K, as well as a primitive `-th root of unity ζ` ∈ K. Suppose
further that K does not contain ζ` but does contain ζ` + ζ−1` . Let Kn be the splitting field of
rn(x, t) over K(t). Then

Gal(Kn/K(t)) ' Z/`n o Z/(`n/bn),

where bn is the number of roots of unity in K(t)(ζ`) of order dividing `n.

We prove Theorem 1 in Section 3.2 by passing to an auxiliary tower of fields {Ln}, where
Ln = Kn(ζ`), and determining the Galois group of this tower. Specifically, we show that
Gal(Ln/K(t)) has the presentation

Gal(Ln/K(t)) = 〈ρn, γn | ρ2`
n−vn

n = γ`
n

n = id, ρnγn = γ−(`−1)
`vn−1

n ρn〉,
where vn is the `-adic valuation of bn in the statement of the Theorem 1. In particular, we
determine Gal(Kn/K(t)) as an explicit quotient of Gal(Ln/K(t)) of index 2. This result
builds on that of [15] on the Galois groups and shows that the Galois group of rn(x, t) is
relatively small (but non-abelian); recall [10, thm. 1] that in characteristic 0, the nth iterate
of the generic monic polynomial of degree k is isomorphic to the nth wreath power of Sk. Thus
our Galois groups have order `2n/bn, compared to the maximal size `!(`n−1)/(`−1). Because we
do not assume that K is a number field, our iterative construction has potential applications
to class number indivisibility problems in positive characteristic function fields, just as the
base function ϕ(x) was used in [3].
The rn(x, t) also have nice applications to arithmetic dynamics. Given a rational self-map
F of P1, one can consider the tower defined as the compositum of the splitting fields of the
iterates F (n) of F . For example, when F is the Lattès map associated to an endomorphism
Φ of an elliptic curve E, it is a classical result that the tower of splitting fields is finitely-
ramified. However, the splitting fields of K(t)/(F − t) may be viewed in the context of the
Kummerian fields K(F (−n)E(K)), and the arithmetic properties of these fields are much less
well-understood.
In the final section of the paper we introduce some of the dynamical properties of the rn(x, t)
in the spirit of [1] and [2]. In particular, we show that ϕ(x) is postcritically finite and give a
simple formula for the discriminant of rn(x, t). We also raise some questions for future study
surrounding the arithmetic of the towers they define.

2. Splitting Fields I – Preliminaries

Fix a positive integer ` ≥ 3. In this section we prove some general results on splitting fields
associated to the rn(x, t). We do not distinguish between even and odd ` until the next
section. We fix once and for all a coherent system {ζ`n}n≥1 of primitive `n-th roots of unity;
that is, ζ`n is a primitive `n-th root of unity and the `-power map sends the level n element
to the level n − 1 element. Recall that ζ` 6∈ K. We first work out some of the key minimal
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22 Arithmetic Properties of Generalized Rikuna Polynomials

polynomials involved in our analysis. Given a field k with algebraic closure k, we define
Irr(π, k)(x) to be the minimal polynomial for π ∈ k over k.
Let µ1 be the group of roots of unity of K(ζ`). For each n ≥ 1, let Gn ⊂ µ1 be the finite
(cyclic) subgroup consisting of elements of order dividing `n, and let bn = #Gn. Thus, Gn is
generated by a primitive bn-th root of unity; we fix a generator and write Gn = 〈ζbn〉. Thus,
for all n ≥ 1, ζbn ∈ K(ζ`) and bn|`n. But since ζ` ∈ Gn for all n, we have that `|bn for all
n ≥ 1.
Let µ2 be the group of roots of unity of K(ζ2`). For each n ≥ 1, let Hn ⊂ µ2 be the finite
(cyclic) subgroup consisting of elements of order dividing `n, and let cn = #Hn. A generator
of Hn is a primitive cn-th root of unity, so Hn contains all cn-th roots of unity, in particular
ζcn . Thus, for each n ≥ 1, ζcn ∈ K(ζ2`) and cn|`n. Since ζ` ∈ Hn for all n ≥ 1, we have that
`|cn for each n ≥ 1.

The following lemma, whose proof can be found in [7, p. 297], will be needed below.

Lemma 1. — Let k be a field, m ≥ 2 an integer, and a ∈ k×. Assume that for any prime p
with p | m we have a /∈ kp, and if 4 | m, that a 6∈ 4k4. Then xm − a is irreducible in k[x].

Next we determine three minimal polynomials that will be used extensively in the rest of the
paper.

Lemma 2. — For all integers ` > 2, we have Irr(ζ`,K(t))(x) = x2− ζ+` x+ 1. Moreover, if `
is odd, or if ` is even and 4|bn, then Irr(ζ`n ,K(t)(ζ`))(x) = x`

n/bn − ζbn. Finally, if ` is even
and 4 - bn, then Irr(ζ`n ,K(t)(ζ2`))(x) = x`

n/cn − ζcn.

Proof. — Since ζ+` ∈ K and ζ /∈ K, assertion (1) follows. For (2), first note that ζ`n is a root
of the (monic) polynomial x`n/bn−ζbn ∈ K(t)(ζ)[x]. Next, for any d ∈ Z≥0, if ζdbn ∈ K(t)(ζ`),
then ζbn is a d-th power inK(t)(ζ`); and if ζbn = zd for some z ∈ K(t)(ζ`), then z is a primitive
dbn-th root of unity, so that all dbn-th roots of unity are in K(t)(ζ`), including ζdbn . Thus,
ζbn is a d-th power in K(t)(ζ`) if and only if ζdbn ∈ K(t)(ζ`). Therefore, if ζbn is a p-th power
in K(t)(ζ`) for some prime p dividing `n

bn
, then ζpbn ∈ K(t)(ζ`). Because p | `

n

bn
, we have that

pbn | `n, so that ζpbn ∈ Gm; but the order of ζpbn is pbn > bn = #Gn, contradiction. Thus,
ζbn is not a p-th power in K(t)(ζ`) for any prime p dividing `n

bn
, and hence x`n/bn − ζbn is

irreducible.
If ` is not odd, we may have 4 | (`n/bn), in which case Lemma 1 requires that we also show
ζbn 6= −4z4 for all z ∈ K(t)(ζ`). We do this when 4 | bn. Suppose that 4|bn, that 4 | `n/bn,
and that ζbn = −4z4 for some z ∈ K(t)(ζ`). Then (2z2)2 = −ζbn , so that 2z2 = ζ4ζ2bn , or
ζ34ζ2bn . Clearly 2z2 ∈ K(t)(ζ`), and since 4|bn and ζbn ∈ K(t)(ζ`), we have ζ4 ∈ K(t)(ζ`),
whence ζ2bn ∈ K(t)(ζ`). But since 4 | `n/bn we have 4bn | `n and thus 2bn | `n, so that
ζ2bn ∈ Gn, contradicting the fact that the order of ζ2bn is 2bn > bn = #Gn. Thus x`

n/bn − ζbn
is irreducible when ` is even and 4|bn.
For (3), note that c1 | ` and `|c1 so that c1 = `. When n = 1 it is clear that the minimal
polynomial for ζ` over K(t)(ζ2`) is x− ζ`, as claimed. Now consider n ≥ 2. Since ` is even we
have that 4|`n; thus if ζ4 were an element of K(t)(ζ`), we would have ζ4 ∈ Gn and thus 4 | bn.
Therefore, our hypothesis implies ζ4 /∈ K(t)(ζ`). However, because ` is even, we do have that
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4 | 2`, and thus ζ4 ∈ K(t)(ζ2`). The arguments from (2) now go through exactly as before,
with K(t)(ζ`) replaced by K(t)(ζ2`).

Lemma 3. — For each n ≥ 2 the degree of the Galois extension K(t)(ζ`n)/K(t) is

[K(t)(ζ`n) : K(t)] =

{
2`n/bn if ` is odd or ` is even with 4 | bn
4`n/cn if ` is even and 4 - bn.

Remark. Note that [K(t)(ζ`) : K(t)] = deg Irr(ζ`,K(t))(x) = 2.

Proof. — Suppose that ` is odd or that ` is even and 4 | bn. Since K(t)(ζ`) ⊂ K(T )(ζ`n), we
have

[K(t)(ζ`n) : K(t)] = [K(t)(ζ`n) : K(t)(ζ`)][K(t)(ζ`) : K(t)]

= deg Irr(ζ`n ,K(t)(ζ`))(x) · 2 = 2`n/bn.

On the other hand, if ` is even and 4 - bn, then K(t)(ζ2`) ⊂ K(t)(ζ`n) (recall n ≥ 2). Thus

[K(t)(ζ`n) : K(t)] = [K(t)(ζ`n) : K(t)(ζ2`)][K(t)(ζ2`) : K(t)(ζ`)][K(t)(ζ`) : K(t)]

= deg Irr(ζ`n ,K(t)(ζ2`))(x) · [K(t)(ζ2`) : K(t)(ζ`)] · 2
= 2`n/cn · [K(t)(ζ2`) : K(t)(ζ`)].

Note that ζ2` is a root of x2−ζ` ∈ K(t)(ζ`)[x], so that [K(t)(ζ2`) : K(t)(ζ`)] ≤ 2. The proof of
Lemma 2 shows that ζ4 /∈ K(t)(ζ`), but that ζ4 ∈ K(t)(ζ2`), so that [K(t)(ζ2`) : K(t)(ζ`)] > 1.
Therefore the degree of the field extension [K(t)(ζ2`) : K(t)(ζ`)] = 2, which completes the
proof of the lemma.

For each n ≥ 1 we know that ` | bn and that bn | `n, so given the prime factorization of `:

` = 2e0pe11 · · · p
em
m ,

the prime factorization of bn has the form bn = 2a0pa11 · · · pamm for some ei ≤ ai ≤ nei. Also
note that because ` | bn, we have K(t)(ζ`) ⊂ K(t)(ζbn). Moreover, since ζbn ∈ K(t)(ζ`) we
have the equality of fields K(t)(ζbn) = K(t)(ζ`).

3. Splitting Fields II – Odd `

In this section and for the rest of the paper we specialize to the case of odd `. We work
out the splitting fields of the rn(x, t) as well as describe an auxiliary tower of fields. We are
ultimately interested in the Galois groups of the rn(x, t) and this auxiliary tower will aid in
determining those groups.

Lemma 4. — Suppose ` is odd and recall that ζbn is quadratic over K(t) for each n ≥ 1.
Then for each n ≥ 1 the conjugate of ζbn over K(t) is ζ−1bn . Hence ζ+bn ∈ K(t).

Proof. — Let ψ be the non-trivial automorphism of K(t)(ζ`)/K(t) so that ψ(ζ`) = ζ−1` . Let
ζabn = ψ(ζbn) be the conjugate of ζbn over K(t). Because ψ2 is trivial, it must be the case that
a2 ≡ 1 (mod bn), whence a2 ≡ 1 (mod paii ) for all i, where the pi are the prime divisors of `
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24 Arithmetic Properties of Generalized Rikuna Polynomials

as above. By assumption, the pi are all odd and it then follows that a ≡ ±1 (mod paii ) for all
i. Now,

ζ−1` = ψ(ζ`) = ψ(ζ
bn/`
bn

) = (ζabn)bn/` = ζa` ,

so that a ≡ −1 (mod `). Thus, a ≡ −1 (mod peii ) for all i. Together with a ≡ ±1 (mod paii ),
we must have that a ≡ −1 (mod paii ) for all i. By the Chinese Remainder Theorem, we have
that a ≡ −1 (mod bn) so that ψ(ζbn) = ζ−1bn .

Lemma 5. — If ` is odd, then for each n ≥ 1, Irr(ζ`n ,K(t))(x) = x2`
n/bn − ζ+bnx

`n/bn + 1.

Proof. — Since ζ+bn ∈ K(t), we have that x2`n/bn − ζ+bnx
`n/bn + 1 ∈ K(t)[x]. This polynomial

is monic and ζ`n is a root. Thus

Irr(ζ`n ,K(t))(x) | (x2`n/bn − ζ+bnx
`n/bn + 1).

However, deg Irr(ζ`n ,K(t))(x) = [K(t)(ζ`n) : K(t)] = [K(t)(ζ`n) : K(t)(ζ`)][K(t)(ζ`) :

K(t)] = 2`n/bn, by (1) and (2) of this Lemma. Since x2`n/bn − ζ+bnx
`n/bn + 1 is monic, it

must be the minimal polynomial.

Corollary 1. — The extensions K(t)(ζ`n)/K(t) are Galois with degree 2`n/bn.

Define the rational function

α(x) =
ζ` − x
ζ−1` − x

∈ K(t)(ζ`)(x).

Lemma 6. — We have the equality of fields K(t)(ζ`) = K(t)(α(t)).

Proof. — It suffices to show that ζ` ∈ K(t)(α(t)). But since ζ+ ∈ K, we can write

ζ` =
ζ+α(t)− t(α(t)− 1)

α(t) + 1
.

Thus, ζ` ∈ K(t)(α(t)), as desired.

Define the polynomial

A(x) = x2 −
(

2 +
(ζ+` )2 − 4

t2 − ζ+` t+ 1

)
x+ 1 ∈ K(t)[x].

Lemma 7. — The minimal polynomial for α(t) over K(t) is A(x).

Proof. — Note that α(t)±1 are the roots of A(x). Since [K(t)(α(t)) : K(t)] = [K(t)(ζ`) :
K(t)] = 2, and A(x) is monic, the lemma follows.

Next, we characterize the roots of rn(x, t). Let
√̀
α(t) ∈ K(t) be an `th root of α(t) and for

each positive integer d, fix a compatible system of `dth roots `d
√
α(t) ∈ K(t) of α(t) in the

sense that
`d
√
α(t)

`
= `d−1√

α(t).

Let Kn be the splitting field of rn(x, t) over K(t). Because of the cumbersome notation
involving the surds, we will set the following notation for the remainder of the paper. Set

βn(t) := `n
√
α(t)
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so that {βn(t)}n≥1 forms a compatible system of `-power roots as well.

Lemma 8. — For all n ≥ 1, the minimal polynomial for βn(t) over K(t)(ζ`n) is x`n − α(t).

Proof. — By Lemma 6, α(t) ∈ K(t)(ζ`n) for all n ≥ 1. It is also clear that x`n−α(t) is monic
and has βn(t) as a root. Note that K(t)(ζ`n) = K(ζ`n)(t), so that any element of K(t)(ζ`n)

is of the form f
g for relatively prime f, g ∈ K(ζ`n)[t]. Also note that α(t) = ζ`−t

ζ−1
` −t

is in lowest

terms, i.e. gcd(ζ` − t, ζ−1` − t) = 1; any non-constant h ∈ K(ζ`n)[t] dividing both ζ` − t and
ζ−1` − t would divide (ζ` − t)− (ζ−1` − t) = ζ` − ζ−1` ∈ K(ζ`n), a contradiction. If α(t) is not
an `-th power inK(t)(ζ`n), i.e. α(t) /∈ (K(t)(ζ`n))`, then x`n−α(t) is irreducible, by Lemma 1.

Suppose that α(t) = (fg )` for some f
g ∈ K(t)(ζ`n). Then f ` = ζ` − t and g` = ζ−1` − t, up

to multiplication by a unit. But if deg(f) = 0 then deg(f `) = 0, and if deg(f) ≥ 1 then
deg(f `) ≥ `, while deg(ζ` − t) = 1 (likewise with g). Thus α(t) is not an `-th power in
K(t)(ζ`n), so that x`n − α(t) is irreducible.

Proposition 3.1. — Fix an integer n ≥ 1. Then the roots of rn(x, t) are given by

θ(n)c =
ζ` − ζc`nβn(t)

1− ζ`ζc`nβn(t)
,

for all integers 0 ≤ c ≤ `n − 1.

Proof. — When n = 1, z ∈ K(t) is a root of r(x, t) if and only if φ(z) = t, which is true if
and only if

ζ−1(z − ζ)` − ζ(z − ζ−1)` = t((z − ζ)` − (z − ζ−1)`) ⇐⇒

(
z − ζ`
z − ζ−1`

)`
=

ζ` − t
ζ−1` − t

= α(t)

⇐⇒ z − ζ`
z − ζ−1`

= ζN` β1(t)

for some 0 ≤ N ≤ `− 1. Rearranging and reindexing, the ` roots of r(x, t) are given by{
ζ` − ζc`β1(t)
1− ζ`ζc`β1(t)

: 0 ≤ c ≤ `− 1

}
,

as claimed.
By induction, φ(n+1)(z) = t if and only if φ(z) = θ

(n)
c for some 0 ≤ c ≤ `n− 1. For each value

of c, φ(z) = θ
(n)
c if and only if

z =
ζ` − ζd` β1(θ

(n)
c )

1− ζ`ζd` β(θ
(n)
c

for some 0 ≤ d ≤ `− 1. Note that α(θ
(n)
c ) = ζ`ζ

c
`nβn(t), so we may rewrite z as

z =
ζ` − ζd`

n+c+`n−1

`n+1 βn+1(t)

1− ζ`ζd`
n+c+`n−1

`n+1 βn+1(t)
.
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Because

{ζd`n+c+`n−1

`n+1 : 0 ≤ d ≤ `− 1, 0 ≤ c ≤ `n−1} = {ζe`n+1 : 0 ≤ e ≤ `m+1 − 1},

and because, for each n, the θ(n)c are distinct, the the roots of rn+1(x, t) are precisely as
claimed. This proves the proposition.

For each n ≥ 0, we define Kn to be the splitting field of rn(x, t) (we define p0 = x and q0 = 1
so that r0(x, t) = x− t and K0 = K(t)). Proposition 3.1 shows that for each n, the fields Kn

are Galois over K(t) since they are the splitting fields of separable polynomials. Moreover,
for each n, we have Kn ⊂ Kn+1 because the roots of φ(n)(x) are the images under φ of the
roots of φ(n+1)(x).

3.1. The auxiliary tower {Ln}. — For each n ≥ 0 we define the field Ln to be Ln =
K(t)(ζ`n , βn(t)). Thus,

L0 = K(t)(ζ1,
1
√
α(t)) = K(t)(α(t)) = K(t)(ζ`).

In Appendix A, we give a field diagram of the Kn and the Ln towers.

Lemma 9. — For each n ≥ 0, Kn ⊂ Ln.

Proof. — Since K0 = K(t) ⊂ K(t)(ζ`) = L0, it suffices to consider n > 0. But for each c
with 0 ≤ c ≤ `n − 1, the field Ln contains the elements

θ(n)c =
ζ` − ζc`nβn(t)

1− ζ`ζc`nβn(t)
,

which generate Kn/K(t). This proves the lemma.

For ease of notation in the subsequent sections, we define the positive integer vn by vn = ν`(bn),
where ν` : Z −→ Z≥0 ∪ {∞} is the `-adic valuation.

Lemma 10. — For each n ≥ 0, the extension Ln/K(t) is Galois with degree 2`2n−vn.

Proof. — Because K(t) ⊂ K(t)(ζ`n) ⊂ Ln, it follows that

[Ln : K(t)] = [Ln : K(t)(ζ`n)][K(t)(ζ`n) : K(t)] = `n · 2`n/bn = 2`2n−vn .

By Lemma 7, the minimal polynomial for α(t) over K(t) is A(x). Let F be the splitting
field of B(x) = A(x`

n
). Note that z ∈ K(t) is a root of B if and only if z`n is a root of A,

i.e. z`n = α(t)±1. Thus, the roots of B are precisely ζc`nβn(t)±1, for 0 ≤ c ≤ `n − 1. Because
F contains both βn(t) and ζ`nβn(t), it contains ζ`n . Thus Ln ⊂ F . On the other hand, since
Ln contains ζ`n and βn(t), it contains ζc`nβn(t)±1. Thus F = Ln and it follows that Ln is
Galois over K(t).
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3.2. Galois groups. — In this section we determine the Galois groups of the field extensions
Kn/K(t) keeping the convention that ` be odd. We begin with an explicit description of the
Galois groups of the field extensions Ln/K(t).

Proposition 3.2. — For all n ≥ 0, the Galois groups Gal(Ln/K(t)) are generated by the
automorphisms ρn and γn, which are determined by

ρn(ζ`n) = ζ
(`−1)`bn−1

`n γn(ζ`n) = ζ`n

ρn(βn(t)) = βn(t)−1 γn(βn(t)) = ζ`nβn(t).

Moreover, they satisfy the relations

ρ2`
n−vn

n = γ`
n

n = id, ρnγn = γ−(`−1)
`vn−1

n ρn.

Proof. — The extensions K(t)(ζ`n)/K(t) and Ln/K(t) are Galois, and by Lemma 8 we have

[Ln : K(t)(ζ`n)] = `n.

Thus, each automorphism of K(t)(ζ`n)/K(t) extends to `n automorphisms of Ln/K(t). It is
easy to check that the mapping

ρ̃n : ζ`n 7→ ζ
(`−1)`(vn−1)

`n

is an element of Gal(K(t)(ζ`n)/K(t)). Since ` is odd, the congruence

(`− 1)`
vn−1 ≡ (−1)`

vn−1 ≡ −1 (mod `)

holds, whence

ρ̃n(ζ`) = ρ̃n(ζ`
n−1

`n ) = ρ̃n(ζ`n)`
n−1

=

(
ζ
(`−1)`(vn−1)

`n

)`n−1

= ζ
(`−1)`vn−1

` = ζ−1` .

Therefore, ρ̃n must act on α(t) as follows:

ρ̃n(α(t)) = ρ̃n

(
ζ` − t
ζ−1` − t

)
=
ζ−1` − t
ζ` − t

= α(t)−1.

It follows that any extension of ρ̃n to an element of Gal(Ln/K(t)) must send βn(t) to ζd`nβn(t),
for some 0 ≤ d ≤ `n − 1. An extension of any automorphism is determined by its action on
βn(t) by definition of the field Ln. We have thus identified all `n extensions of ρ̃n. The ρn
defined in the statement of the Proposition is indeed an automorphism of Ln/K(t) because
it is one of the extensions of ρ̃n. By Lemma 8 it is also clear that ζ`nβn(t) is a conjugate of
βn(t) over K(t)(ζ`n), whence the map γn defined in the statement of the Proposition is an
automorphism of L/K(t). It is clear that the order of γn is `n and the order of ρn is 2`n−vn

because ρdn = id if and only if

ζ`n = ρdn(ζ`n) = ζ

(
(`−1)`vn−1

)d

`n , and

βn(t) = ρdn(βn(t)) =
(
βn(t)−1

)d
,
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which is the case if and only if

1 ≡
(

(`− 1)`
vn−1

)d
= (`− 1)d`

vn−1
(mod `n),

and d is even. But this is true if and only if 2`n−vn | d, and because 2`n−vn is even, it is the
least d ≥ 1 such that ρdn = id.

Because an automorphism of Ln/K(t) is determined by its action on ζ`n and βn(t), it suffices to

check the relation ρnγn = γ
−(`−1)`vn−1

n ρn on these two elements. This is a routine computation
which we omit. Thus, the subgroup of Gal(Ln/K(t)) generated by ρn and γn consists of the
(possibly non-distinct) automorphisms ρxn, γ

y
n, where 0 ≤ x ≤ 2`n−vn and 0 ≤ y ≤ `n − 1. It

is also not difficult to show that these automorphisms are all distinct.

Theorem 2. — For all n ≥ 0 the Galois group Gal(Kn/K(t)) is generated by σn := ρn|Kn

and τn := γn|Kn. They satisfy the relations

σ`
n−vn

n = τ `
n

n = id, σnτn = τ−(`−1)
`vn−1

n σn.

Granting the theorem for a moment, the description of Gal(Kn/K(t)) in terms of generators
and relations lends itself to a description as a semidirect product:

Gal(Kn/K(t)) ' Z/`nZoφn Z/(`n−vn)Z,

where φn : Z/(`n−vn)Z −→ Aut(Z/`nZ) is given by φn(1) = (1 7→ (−1)(` − 1)`
vn−1

). Note
that φn is injective, i.e. (1 7→ (−1)(`− 1)`

vn−1
) is always an automorphism of Z/`nZ of order

`n−vn because the order of −(`− 1)`
vn−1 modulo `n is `n−vn .

Proof of Theorem 2. — Basic Galois theory tells us that the quotient map

Gal(Ln/K(t)) −→ Gal(Kn/K(t))

is given by restriction; thus Gal(Kn/K(t)) is generated by σn and τn. Because σn and τn are
the restrictions of ρn and γn, respectively, they satisfy the same relation. Since

ρ`
n−vn

n (ζ`n) = ζ

(
(`−1)`vn−1

)`n−vn

`n = ζ
(`−1)`n−1

`n = ζ−1`n , and

ρ`
n−vn

n (βn(t)) = (βn(t))(−1)
`n−vn

= βn(t)−1,

it follows that ρn(ζ`) = ζ−1` .
Since Kn is the splitting field of rn(x, t) over K(t), it is generated over K(t) by

θ(n)c =
ζ` − ζc`nβn(t)

1− ζ`ζc`nβn(t)
,

for each 0 ≤ c ≤ `n − 1. Note that for each c we have

ρ`
n−vn

n (θ(n)c ) =
ρ`

n−vn

n (ζ`)− ρ`
n−vn

n (ζc`nβn(t))

1− ρ`n−vn
n

(
ζ`ζ

c
`nβn(t)

) =
ζ−1` − ζ

−c
`n βn(t)−1

1− ζ−1` ζ−c`n βn(t)−1
=

ζc`nβn(t)− ζ`
ζ`ζ

c
`nβn(t)− 1

= θ(n)c .

Thus, ρ`n−vn

n restricts to the identity on Kn so that ρ`n−vn

n ∈ Gal(Ln/Kn). By Proposition 3.2
the order of ρ`n−vn

n in Gal(Ln/K(t)) is 2, hence 2 divides # Gal(Ln/Kn) = [Ln : Kn]. Together
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with Lemma 10 we can conclude that 2 - [Kn : K(t)] and so it follows that ζ` /∈ Kn. Since
θ
(n)
c ∈ Kn ⊂ Kn(ζ`) for all 0 ≤ c ≤ `n − 1, it must be the case that

θ(n)c − ζ−1` =
ζ` − ζ−1`

1− ζ`ζc`nβn(t)
∈ Kn(ζ`).

But since ζ`−ζ−1` ∈ Kn(ζ`), we have that ζc`nβn(t) ∈ Kn(ζ`n) for all 0 ≤ c ≤ `n−1. Therefore
both βn(t) and ζ`nβn(t) are elements of Kn(ζ`), whence ζ`n ∈ Kn(ζ`). Altogether this results
in the inclusion of fields:

Kn ⊂ Ln ⊂ Kn(ζ`).

Since 2 divides [Ln : Kn] and [Kn(ζ`) : Kn] = 2, we have that # Gal(Ln/Kn) = 2. We can
also conclude that Ln = Kn(ζ`) and that # Gal(Kn/K(t)) = `2n−vn .
In light of these observations on the Galois groups, we see there is exactly one non-trivial
automorphism of Ln/K(t) that restricts to the identity automorphism on Kn/K(t). We have
seen that ρ`n−vn

n has this property, so it must be the only one. Because the order of σn is the
least d ≥ 1 such that σdn = id, the order of σn must be `n−vn . Finally, since γyn does not equal
ρ`

n−vn

n for any y, γyn restricts to the identity on Kn if and only if it is the identity on Ln. Thus
the order of τn is `n. This completes the proof of the theorem.

4. Dynamical Properties

In this final section we adopt the notational conventions and context of [1]. Let K be a
number field and fix a rational self-map ϕ of P1 defined over K; in coordinates, we may
take ϕ(x) = g(x)/h(x) with g(x), h(x) coprime elements of OK [x]. Then for n ≥ 1, the
splitting fields of the iterates ϕ(n)(x) − t give rise to tower of splitting fields of the previous
iterates. More precisely, we let Fn be the Galois closure of the field K(t)/(ϕn(x) − t) and
Fϕ the compositum over all n of the splitting fields: Fϕ = ∪nFn. Fix a compatible system
of specialization maps σn : OFn −→ K and set Kn,t0 to be the Galois closure over K of the
specialized extension. In this way the compositum Kϕ,t0 can be viewed as a specialization of
the tower Fϕ,t0 .
It is quite difficult to determine the exact primes ramifying in a tower, and the ones which are
known tend to use auxilliary information. For example, given an elliptic curve E/Q without
complex multiplication and a rational prime `, the iterates of the Lattès map ϕ` give rise to
towers ramified above ` and the primes of bad reduction for E. A similar example concerns
the Chebyshev polynomial ψ2(x) = x2 − 2. The tower of splitting fields of the iterates of
ψ2 is ramified only above 2. Moreover the Chebyshev polynomials ψd arise as the image of
projection-to-x for the d-power map on the algebraic group S1. At the same time, in both
examples the associated Galois groups are smaller than one would expect from a “random”
tower (the Galois group of a Lattès tower is an open subgroup of GL2(Z`), while the Galois
group of the Chebyshev tower is isomorphic to the additive group Z2 of 2-adic integers). Both
of these examples come from the specialization t = 0; other specializations would potentially
give rise to towers whose Galois groups are less well-understood (though in the case of Lattès
maps, if t were the x-coordinate (in Weierstrass form) of a point of infinite order, then more
can be said in terms of arboreal representations; see [4] for more details).
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The common characteristics of these two examples are “small” Galois group, finite ramification,
and that ϕ is postcritically finite; moreover, both arise via endomorphisms of algebraic groups.
The rn(x, t) share some of these characteristics. To give a little more detail, with all notation
as above let

Rϕ := {θ ∈ K : (hg′ − gh′)(θ) = 0} and Bϕ := {ϕ(θ) : θ ∈ Rϕ}

be the sets of ramification points and branch points of ϕ, respectively. In particular, Rϕ
consists of the roots of hg′− gh′ counted without multiplicity. A rational function ϕ is said to
be postcritically finite if the forward orbit of the critical points under all iterations is a finite
set. In other words, if

Bϕ(n) = Bϕ ∪ ϕ(Bϕ) ∪ · · · ∪ ϕ(n−1)(Bϕ)

is the set of branch points of ϕ(n), then ϕ is postcritically finite if ∪nBϕ(n) is a finite set.
We can apply this setup to the rn(x, t). Fix ` > 2 and set ϕ(x) = p(x)/q(x), where p(x) and
q(x) are as in the Introduction. Then the following lemma is a simple computation.

Lemma 11. — Let ` > 2 be an integer and K a field of characteristic coprime to `. Suppose
that ζ+` ∈ K, where ζ` is a primitive `th root of unity. Then ϕ(x) = p(x)/q(x) ∈ K(x) is
postcritically finite.

Proof. — The critical points of ϕ are ζ` and ζ−1` , each of which is fixed by ϕ.

In the context where K is a number field, the fact that the ϕ are postcritically finite means
the function field towers are finitely ramified. Moreover, the discriminant formulæ of [1, 2]
imply that for all t ∈ K, the specialized towers at t are finitely ramified as well. Indeed,
applying the results of [1, 2] to the present setup, we obtain:

disc rn(x, t) = ±`n(`n)(ζ` − ζ−1` )(`
n−2)(`n−1)(t2 − (ζ` + ζ−1` )t+ 1)`

n−1.

This bounds the number of primes ramifying at any level of the tower and moreover shows
exaclty what the potential ramified primes are. In particular, the primes of OK dividing ` are
ramified in the tower, while those dividing t2 − ζ+` t+ 1 may be ramified.
In the special case where ` is a prime number and K = Q(ζ+` ), we have the factorization
` = l(`−1)/2 as ideals of OK . It would be interesting to determine specializations at which
only a few primes in addition to l ramify in the tower above K. If we set ` = 3, however,
and take for example t = 0, 1 so that 3 is the only ramified prime, then the tower above
Q specializes to the abelian cyclotomic-3 tower. A delicate problem would be to determine
an explicit relationship between the ramified primes and the index of the specialized Galois
group inside the geometric Galois group. Finally, it would be interesting to determine, along
the lines of the Lattès and Chebyshev towers, whether there is an alternative “geometric”
description of the rn(x, t), which would make the analogy more complete.
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Appendix A
Field Diagrams

The following diagram shows the relationship between the towers {Kn} and {Ln}. Define
b ∈ N ∪ {∞} to be

b = sup{m ∈ N : K(ζ`m) = K(ζ`)}.
For example, if K = Q then b = 1; if K = R then b = ∞; and if K = Q(ζ`2 + ζ−1

`2
) then

K(ζ`) = K(ζ`2) but K(ζ`) ( K(ζ`3), so b = 2. In terms of the towers, when n ≥ b, there
are ` + 1 intermediate fields between Kn and Kn+1. Finally, we make the convention that
a single line denotes that all infinite primes are inert, while a double line indicates that all
infinite primes split completely.
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Lm+1 = K0(ζ`m+1 ,
`m+1√

α(T ))

2 `
`

`

Km+1

`
`

`

Lm( `m+1√
α(T ))

`

Lm(ζ`−1

`m+1
`m+1√

α(T ))

`

··· Lm(ζ`m+1 )

`

Km(θ
(m+1)
0 )

`

Km(θ
(m+1)
`−1 )

`

··· Km(ζ`m+1 + ζ−1

`m+1 )

`

Lm = K0(ζ`m ,
`m
√
α(T ))

2

Km Lb+1 = K0(ζ`b+1 ,
`b+1√

α(T ))

2 ` `
`

...

Kb+1

`
`

`

...

Lb(
`b+1√

α(T ))

`

Lb(ζ
`−1

`b+1
`b+1√

α(T ))

`

··· Lb(ζ`b+1 )

`

Kb(θ
(b+1)
0 )

`

Kb(θ
(b+1)
`−1 )

`

··· Kb(ζ`b+1 + ζ−1

`b+1 )

`

Lb = K0(ζ`,
`b
√
α(T ))

`
2

Kb

`

Lb−1 = K0(ζ`,
`b−1√

α(T ))

...
2

Kb−1

...

L1 = K0(ζ`,
√̀
α(T ))

`
2

K1

`

L0 = K0(ζ1, α(T )) = K0(ζ`)

2

K0 = K(T )

Lm

`m

2

Km

`2m−v K0(ζ`m )

2`m−v

K0
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